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Abstract

This paper describes a criterion, based on Bayes's theorem, that defines the optimal set

of classes (a classification) for a given set of examples. This criterion does not require

that the number of classes be specified in advance; this is determined by the data. Tu-

tored learnin s and probabillstic prediction in particular cases are an important indirect

result of optimal class discovery. Extensions tothe basic class induction program include

the ability to combine category and real valued data, hierarchical classes, independent

classifications and deciding for each class which attributes are relevant.

1 Introduction

This paper describes a method for automatically di_overing (inducing) classes from a

given database. These classes can then be used to give insight into the patterns that

occur in the particular domain, or make predictions in particular cases. This type of

learning is often called unsupervised or untutored learning, since there are no precon-

ceived class_ and the number of classes to be found is not known. In supervised learning,

on the other hand, the user expects the system to induce s specific classification based

on a set of pre-eAassilied examples. In either kind of l_ruing, the resulting clmmilication

can be used to classify new eases. Many previous authors have published approaches in

the area of automatic clam _ [9]. A larP number of these approaches employ
clustering methods which tree a =_mJlarity" measure that defines a =distance" between

any pair of cues based on how "close" thE descriptions are. Unfortunately, automatic
cltmtering methods give different results depending on the similarity measure chosen.

Even more disturbing is that automatic clustering methods require the user to specify

the number of classes to be discovered, or rely on ad koe methods for choosing an ap-

propriate number of classes. As a result of the lack of a good criterion for choosing the

number of classes, these methods often produce classes even if given randomly generated

date. Consequently, the user never knows if the classes produced by clustering methods

indicate actual clm in the domain or_ just the result of random variation and the

similarity mesattre used. Despite these criticisms, if there are strong natural classes in

the data, clustering methods with any reasonable similarity measure will find them. It

is when the natural clasm_ are buried in ex_ceesive noise that clustering methods break
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The ditficulties of clustering methods are well known, and have been strongly criti-

cized in the AJ ]earning iltersture---eee [6],[9] for s clear critique. Michalski proposes an

alternative method for automatic r.lass discovery called Wconceptual clustering _. Briefly,

this method uses a clustering procedure to produce potential clMses, then uses a mini

mum descr/ption criterion (in a given language) to choose the final cla._es. The resultins

classes dearly depend on the methods for generating candidate cle_es and the language

used to describe them. Michalaki regards this dependence as inevitable because he does

not believe in "natural" classes. Instead, he believes that classes depend on the purpose

of the classification, which in conceptual clustering is embedded in the class description

language. MJchalaki'e approach ra_es the fundamental question: in automatic c]uslfi-

cation, are classes invented or discovered? This is an old philosophical problem.

The approach described in this paper finds the most probable classification given the

data. Since this is a Bayesian approach, prior probabilities for the number of possible

classes need to be given, as well as prior probability distributions for all the parameters

in the classification model. Intuitively, the most probable classification is the one in

which the clue descriptions (i.e. the probabilities of the attribute values) best predict

the observed values. The moat probable classification also decides the optimal number

of classes as well as the class descriptions. Because it takes considerable data to move a

class description away from its prior value, the Bayesian criterion is automatically biased

against introducing more clamu_ than the available data wUl support. The criterion for

deciding which is the most probable classification is t direct consequence of Bayes'e

theorem (section 3), and does not require any ad Aoe assumptions--in particular, it

does not require any similarity measure, because it does not directly compare particular

eases. The Bayesian criterion for optimal classsificstion essentially depends on how

well the proposed classes predict the given data; the accuracy of the prediction could

be regarded as a kind of similarity measure. 1 Although the classes found depend on

the language used to describe the data, they do not depend on the "language m used to

describe the classes, as in conceptual clustering.

The new automatic Bayesian class induction procedure allows both category-valued

information (e.g. Sex) and real-valued information (e.g. Blood-pressure) in the data

description. The particular method described in asct/on 3.1 makes a number of assump-

tions. Section 4.2 discusses extended models that relax some of these assumptions. In

particular, the assumption that all variables are important in describing all classes can

be removed, as well as the assumption of mutual exclusivity of the classes. The Bayesian

approach defines the criterion for optima] classification, but it does not say how to find

the optimum--this is s di_cu/t search problem. The use of the discovered classification

for prediction purposes is discussed in section 5. This method of making predictions

v/s a mapping onto classes is a common pattern of human reasoning, and corresponds

cloeely to other supervised learning methods, such as 1133 [9]. The use of the clans
induction procedure for discovery of classes and their subsequent use for prediction can

be viewed as automatic discovery of expert systems--without the expert.

sT_ l_tymhm c:dt,efloa k defined between the clan dmc_iptloaJ and the cairn, not betwma pairs of
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2 Data Format Definition

A typica] data base of the form required is shown in Fig. I. It assumes that all the data

is in the form of an ordered (i.e. fixed) list of attributes that describe each case (example,

item etc.). Attributes can either have category values, (e. s. Blood-Group), that have a

predeterm/ned set of possible values, or they can be real-valued, (e. s. Blood-Pressure).

Catagory values are usumed to be mutual]y exclusive and exhaustive. Real-valued

attributes are sometimes referred to here as ¼ariables. In the AI literature, reference

is often made to 'Ltree-valued_ attributes. For example, the attribute SHAPE can be

split into values [TRIANGLE, QUADRILATERAL, ..- etc.] at the first level, and the

value TRIANGLE can be further subdivided into [REGULAR, ISOCELES, RIGHT-

ANGLED, IRREGULAR] and the value IRREGULAR can be divided into [OBLIQUE,

NON-OBLIQUE] sad so on. However, the leaf nodes of the tree form a set of mutually

exclusive and exhaustive values, so that the tree structure can always be flattened into a

set of mutually exclusive and exhaustive values (as required by the above format). Tree

structures may implicitly contained important prior probabilities information for the

possible leaf values, leading to non-uniform prior probabilities. Such prior information
should be extracted when the tree is flattened.

The data base format has a number of built-in assumptions that limit its generality.

For example, it aesumes that the nun_ber of possible outcomes for a given predicate

is known (but the possibility of other values can be allowed for by adding an "other"

catagory--see below). Although a possible attribute value is whether a patient is mar-

ried or not, the format does conveniently represent the information that two particular

patients are married to each other. Such relational information can be included by suit-

ably extending the predicate. For the marriage example, a predicate "In-marriage" can

be introduced, with specific values giving which marrlase (if any) a particular individual

is in. Married couples (or larger groupings) will all have the same marriage identifier.

Another l/m/ration is that the theory presented currently does not make use of orderin s

information. One form of ordering information that is ignored is orderings on catagory

values of discrete attributes. For example, an attribute such as EDUCATION-LEVEL

can have values such as [HIGH-SCHOOL-DROPOUT, HIGH-SCHOOL-GRADUATE,

SOME-COLLEGE, etc.]---where an orderins on the values is understood. However, the

theory presented below ignores such orderinss by mmumlng that the only catagory la-

beis matter. Similarly, the theory assumes that the order of the attributes that describe

each case is arbitrary, so the results would be the same regardless of the order given. In

other words, a data base is regarded as identical if the columns, such as in Fig. I, are

interchanged. When the attributes are particular wavelength intensities in the spectrum

of an object, for example, this assumption is clearly isnorin s important information.

H the data collector is not sure that the current catagories will cover all future

values, a value "OTHER s can be added to allc_w for this possibility. However, the user

must supply some prior probability that OTHER will occur or the system will give this

probability a global default value. If the data base has missing data (indicated by *),

this is treated as another possible value of the _ attribute, which also must be given

a suitable prior probability. The possible values of the "Sex" attribute, for example, are

then: [Male, Female, *].
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Figure 1: Patient Data Base

3 Basic Bayesian Theory

We use Bayes's theorem to find the probability of each classification hypothesis E.,

given all the data (cues) D. A clarification hypothesis Ej is the hypothesis that there

are exactly ,7 claases, and is given by Bayes's theorem:

P(Hj I D) = cP(H )P(D I HJ) (1)

where c is the normalizing constant (defined by the requirement that E_ffil P(H., I D) =

1); and P(H.r) is the prior probability that there are J classes. In the absence of any

prior knowledge about the expected number of classes, We set all P(H.r) priors equal,

and so this term is absorbed into the normalizing constant e. If the user has some prior

know]edge about the expected number of classes, this information can be inserted by

chooeing the appropriate non-equal priors P(Ej). For example, the user might have

prior knowledge that there are almost certainly classes present, so P(EI) is given very

low weight. E_x_isting programs that find cla_ in random data are essentially putting

strong prior weight on the existence of classes, and so find cluses in the noise. In

Eqn. 1, D is the entire set of cases in the data base, as described in section 2. The only

remaining undetermined term is the likelihood function P(D I H.v). By definition, we
h-re

P(D IEj) = P(D,_rj,O i. 1sj) (2)

where _rj and 0j_ are vectors of all the parameters that define the classiBcation model,

an de£med below. In Eqn. 3, we integrate out (i.e. marg_aalize) the parameters that

define the cluses to get the simpler term P(D I Hj) that is not a function of the class

parameters. If the likelihood .P(D I _rj,0jk,Ej) (still a function of the class description

parameters) is used instead of P(D I Hj)j as is usually done in maximum likelihood

methods, it is not possible to mak e me_Kfnl comp_ns between hypotheses with
different numbers of parameters. M_ likelihood methods always _ favor h_othe-

sea with more parameters because they give more degrees of freedom to fit the likelihood

_Unkl the number of parameters _ the amount of data.
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to the data. In the case of classification, the "best = maximum likelihood fit occurs when

there are as many classes as there are cases, and the class parameters match the case

values exactly. The problem of overfitting when using maximum likelihood methods is

well known, but the Bayesian solution to the problem is not, even though the Bayesian

solution has been in the literature for nearly 50 years [8].

3.1 The Likelihood Function

The likelihood function, P(D [ g$, 0-it, Hj), is a measure of how likely the given data is

to have come from the given class hypothesis Hj, defined by the parameters {xj,Oit ).

As an example, let us suppose our database consists of measurements of apples taken

from an orchard. We have I apples and have measured K attributes of each (diameter,

density, color, sugar content, etc.). The Bayesian classification method will produce a

set of class descriptions based on these observed attributes that might correspond to J

different varieties (Golden Delicious, Granny Smith, Pippin, etc.).

We use the following notation:

i = object number (I to I)

j -- c.lass number (1 to J)

/c = attribute number (1 to K)

_t -- measured value of the/cth attribute (diameter, density, etc.) of the

ith apple
-- vector of attributes of ith apple

---- the set of attribute vectors of all I apples (- D)

-- vector of parameters which describe the probability distribution of

the kth attribute of the jth class
-- clam 3"probabillty--relative abundance of class j, e.g., the fraction

of the sample of apples that are Granny Smiths -

The likelihood represents the probability that the apples in our sample came from

an orchard with a specified proportion of classes of apples (g$), with each class defined

by attribute value probabilities (0ik). To expand the likelihood further, we make the

following assumptions. First, we assume the cases (examples, samples etc.) are indepen-

dent, that is, the probability of getting our particular sampling of apples is equal to the

product of the probabilities of getting each apple individually. This data independence

assumption is equivalent to:

!

Next, we assume the classes are mutually exclusive and exhaustive, so the probability of

a single apple growing fn our hypothetical orchard is equal to the sum of the probabilities

that it came from each varietys weighted by the proportion of that variety in the orchard,

228



]

i.e.,

I H.,.)
J

,,., .,"1i'.,,,,
ill

Finally, we assume all the attributes are (conditionally) independent within each claasQ

i.e., given that an apple belongs to a particular class, the attributes within that class are

independent of each other. This would not be the case if our measurements included

both diameter and weight, since these quantities would show a strong correlation in

every class. Under this assumption, we have:

R

N pC=,,, .,'.
k--!

The probability of getting a particular attribute value zlkfor a particular class 3" is a

function of the definition of the cl,_u (as specified by the cl_ parameters 6jk) and the

value (_k), i.e.,

where we have assumed that the clans parameters are independent of the number of

classes (H,T). For example, the probability of a Granny Smith having a particular

diameter is part of the definition of what constitutes a Granny Smith apple, and we

must decide what sort of diameter distribution is appropriate for Granny Smiths. For

real-valued variables, we will use a Gaussian probability distribution:

where _k is the error in measuring zit. In this equation, we are assuming that the

measurement error is much lees than the class standard deviation (i.e. Az_k _C:¢_). If

this assumption holds, then the integral of the Gausaian curve for z_k over the range

Azi_ is closely approximated by the value of the Gauesian at _multiplied by its width

£z_, as given by the equation above. In choosing this equation to model our clm_ee, we

are describing the classes by two parameters, p and _, that together define the vector

This choice of a class model function may not be the beat choice if, for instance, the

harvesters have discarded apples whose diameters fall below a certain value. If this

were the case, the correct probability distribution would be a truncated Gaussian. The

Bayesian method is flexible with regard to the functions used to model the classes.

Theoretically, any smooth, normalizable function can be used.
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For catagory-valued attributes, such as apple color, we have

P(_ I _ E class j, e'yk, Hj) = pj_; where z,k = lh.

That is, for the discrete attribute k, the probability of the z,_th value being in the

category Ik is given by Pikl. The set of probabilities Pi_ are the class parameters eikin
the discrete case.

Putting the above components together, the full likelihood function is

I J X

'=| j=l k--|

This product can be expanded to love:

• pC{",).,IJ= l)pC(z,)..., lJ=2) • l j= J)

where (hi) represents a partition of all I cases into J classes with n_. cases in each

clam, and the summation k over all possible partitions of cues into clsases. The terms

in this sum are products of the probabilities of a particular partition of cases into

classes, weighted by the product of powers of the class probabilities _rj. Note that

nl + n2 + - - - + n_ = I. In general, thLs k sum has a very large number of terms.

3.2 Integration

The llke[ihood p((_) I _,ei_,Bj) , loves the probab[l/ty of the data (_)as a function

of the clus descriptions (Iri, _'k)- Using I above and suitable class priors p(Hj), we

then calculate p(Hj [ (_}). By calculating _s posterior for d_erent values of J, we

can then End the value of J that loves the most probable posterior value. That is, we

can search for the class hypothesk Hj that loves the "best" number of classes. In order

to be able to compare these posterior probab_ties for d_erent numbers of classes, we

muJt intestate out the class parameters, as indicated in Eqn. ??. In more detail, we
have:

In the last step, we are assuming that the. class parameters _r_ and _ are independent

of the number of classes J. Equation 4 is a multi-c]hnensional intergral over the full

set of parameters. Note that Equation _ already loves us the l_e1_hood term, but

the prior probab_ties on the parameters p(_ry, _y_) require further explanation. These

prior probab_ty dktributions represent the user's knowledge of the possible values
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of the parameters before the actual data is seen. Typically the prior probabilites on

parameters are represented by an approximate range on the data.
Th_ integral can be clone in closed form for the real-valued and discrete valued cases.

The intergal of the sum (Eqn. 3), becomes a sum of integrals; each integral having a

clc6ed form solution. These integrals are given explicitly in a compan/on paper due to

lack of space. The result of this integration is a closed form solution to the probability oi

the data, (_}, for each possible number of classes J. The problem is to find J with the

maximum posterior probability. Unfortunately, for a large number of data points and

many classes, the number of terms in the closed form solution is too large to evaluate

exhaustively, so Monto Carlo sampling methods are being investigated to approximate

this sum.

4 Assumptions

The _umptions (or limitations) built into the method described above are:

2o

Assumptions

That classification is an appropriate model of the data. This is not true for

temporal (non-static) data, for example.

That all attributes are useful in distinguishing classes--the extension to allowing

every attribute to be either relevant or irrelevant to a particular class is discussed

in the next section.

.

.

J

That all classes are independent of each other--this implies that knowledge of

the probabilities of particular attributes in one rims giv e no information about

the underlying probabilities in any other class. One method of removing thin

assumption is to introduce hierarchical cla_es, discussed below.

Classifying all cases into a set of mutually exclusive and exhaustive classes is

appropriate. Independent classifications, discussed below, provide an alternative.

That the attributes within a class are independent--i.e, the attributes are con-

ditionally independent; conditioned on belonging to the given class. This is not

correct when attributes such as Height, Weight, Length etc., are used, since they

are all dependent on a common "shape" factor. It is possible to correct for such

dependencies by using suitable joint probabilities, but these correction factors are
not discussed here.

6. That all the data can be cast in the form of properties of individual cases--i.e.,

no relations between cases are permitted (see section 2).

7. That all class hypotheses (including ones with different numbers of classes) are

equally likely a priori.
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4.2 Re|axation of Assumptions

The Bayesian method does not care which model is used. By bul]dmg different likelihood

functions, the user can put in whatever model desired. However, in genera], the more

complex the model (i.e., the more adjustable parameters it contains), more data is

needed to justify the additional complexity. We have considered the following models

that relax some of the above assumptions.

4.2.1 Attribute Relevancy

The basic method presented above assumes that a]l the attributes are informative in

deciding class membership. If most of the attributes are uninformative for a particular

class, then the cost of estimating these parameters separately degrades the ability for

the method to discover finer classes. This is because of the fundamental link between

the number of parameters in a model relative to the amount of data. This restriction

can be removed by specifying for each class w_ch attributes are relevant to that clans

description. Those attributes that are relevant have their own clans parameters to be

estimated. Those attributes that are judged irrelevant to a particular clans description

are calculated using a single set of parameters that are shared across the corresponding

classes. We note that different application domain di_er considerably in the relevancy

of the attribute. In the spectral claesii_cation experiments, the assumption that a]I

attributes (spectral values) are relevant is justified, but for medical data bases we have

investigated, where there are many very di_erent attributes, moat of which are not

relevant to a particular class description.

4.2.2 Hierarchical Claua

The assumption that all claeses are independent of each other (as well as being mutually

exclusive and exhaustive) may not be correct in many applications. The independence

assumption implies that knowledge of the probability distribution for attribute va]ues

in one class is non-informative about the corresponding dktribution in another class.

This assumption can be relaxed by introducing hierarchical classes, where classes closer

together on the (hierarchical) tree are closer to each other. It is a simple matter to

build classes hierarchically; the method is to form classes directly, then extract these

class dew.riptions as data and recunively look for clmms within the classes, and so on.

Unless there is a huge amount of data, this process rarely goes beyond two levels. It

is also possible to do hierarchical class eplltting. The method is to first find the set

of cases whose probability of belonging to the class to be split is suficiently high (e.g.

95%). The classification procedure is then applied to this subset of cases, using prior

probabilities appropriate to this subset. The resets when applied to the IRAS classes

have revealed very interesting fine structure.

4.2.3 Independent Classifications

Perhaps the strongest assumption is that a classification is appropriate at all] That is,

there are many situations where the assumption of mutually exclusive and exhaustive
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classes is not appropriate. HIV infected patients are either [Non-symptomatic, Pre-

AIDS, ARC or AIDS]--i.e., such patients murat be one or other of these alternatives.

On the other hand, diseases are not mutually exclusive, so it is possible for a patient

to both have typhoid sad cholera simultaneously. Given this situation, it is desirable

to develop a classificstion model that allows multiple overlapping classifications. This

means that a given case has a simultaneous probability distribution over each classi-

fication, and so can belong to more than one class, if the classes belong to different

classifications. It is possible for a single case to have both AIDS and cholera. About

the simplest model l'or multiple classifications is to assume that the classifications are

completely independent of each other. This means that knowledge of the probability

distribution in one classification says nothing about the distribution in another. The

resulting likelihood of the ith value of the A attribute, given that it belongs tothe yth
class in the C classification and to the kth class in the D classification is:

I IC.Op(AI
1 (4)

where n is the number of classifications, and p(A_ I Ci) is the probability of the ith

attribute value given that the case is in the jth class under the Cth classification (and

similarly for the D_h classification). The t_rms such as p(A,- I Ci) are calculated as
previously described in section 3.

4.2.4t Extended ]&,Iodels

The Bayesian criterion for finding the best classification model (and its various exten-

sions discussed in this section) is of much greater generality. The derivation in section

3 has been specialized to classification, but other models are possible. For a descrip-

tion of applications of the Bayesian criterion to domains such as learning of _n'ammars,

finite state machines, line finding etc. see [7]. A natural extension of the automatic
classification approach is to include time dependent data bases--i.e, trend analysis.

This extension win require models of how systems evolve with time and priors on these

possible models. Temporal models, such as Markov models and parameterised temporal

models (e.g. Four/st, exponential decay etc.), are being investigated.

5. Prediction

AI and statist|cal pattern recognition literature often obscures the reason for finding

good classifications. The classification work reported here was originally motivated by

the desire to make (probabilistic) predictions directly from data. A previous approach

[4],[5], based on maximum entropy, allowed the direct calculation of the (conditional)

probability of any attribute value given any combination of other attribute values (i.e.

_ven particular evidence). The domain information in the previous approach consisted

of a set of joint or conditional probabilities (constraints) that summarized all the sig-

nificant information about intervariable correlations in the domain. These significant

constraints were found by comparing the ezpeeted probabilities of attribute value com-

binations with the obmereed values in a data base. Unfortunately, the cost of computing
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